Model Answer: Summer 2018

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	(d)	State Lami's theorem.		
	Ans.	Lami's theorem states that, if three forces acting at a point on a body keep it at rest, then each force is proportional to the sin of the angle between the other two forces.	1	
		As per Lami's theorem, $\frac{F_{1}}{\sin \alpha}=\frac{F_{2}}{\sin \beta}=\frac{F_{3}}{\sin \gamma}$	1	2
	(e) Ans.	Define angle of repose. Angle of repose is defined as the angle made by the inclined plane with the horizontal plane at which the body placed on an inclined plane is just on the point of moving down the plane, under the action of its own weight.	2	2
	$\begin{gathered} \text { (f) } \\ \text { Ans. } \end{gathered}$	Define centre of gravity. Centre of Gravity :- It is defined as the point through which the whole weight of the body is assumed to act, irrespective of the position of a body. e.g. Cone, Cylinder.	2	2
	(g) Ans.	State any two types of beam along with sketch. Following are the different types of beams -		
		(ii) Cantilever beam (iii) Over hanging beam	1 each (any two)	2

Model Answer: Summer 2018

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2		$60=\frac{W / P}{J D} X 100$		
		$60=\left(\frac{W}{V R}\right) \times \frac{1}{P} \times 100$	1	
		$60=\left(\frac{W}{V R}\right) \times \frac{1}{200} \times 100$	1	
		$\left(\frac{W}{V R}\right)=\frac{60 \times 200}{100}$		
		$\begin{aligned} & \text { Since, } W / V R=P_{i} \\ & P_{i}=120 N \end{aligned}$	1	4
	(c) Ans.	What are the characteristics of ideal machine? Following are the characteristics of an ideal machine (1) Efficiency of the machine is 100% (2) Output = Input (3) Machine is free from frictional losses. (4) Mechanical Advantage $=$ Velocity Ratio	1 each	4
	(d) Ans.	State four laws of static friction. (1) The frictional force always acts tangential to the plane of contact and in the direction opposite to the impending motion. (2) When the body is in limiting equilibrium, the limiting friction bears a constant ratio to the normal reaction. This ratio is called as "Coefficient of friction". (3) The coefficient of friction depends only upon the nature of surfaces in contact and is independent of the surface area in contact. (4) The static friction is more than dynamic friction. (5) Force of friction is a self-adjusting force and it increases as the applied force increases up to limiting friction.	1 each (any four)	4
Q. 3		Attempt any THREE of the following :		12
	(a) Ans.	Find the angle between two equal forces of magnitude 300 N each, if their resultant is 150 N Using Law of Parallelogram of forces		
		$\begin{aligned} & \mathrm{R}^{2}=P^{2}+Q^{2}+2 P Q \cos \theta \\ & (150)^{2}=(300)^{2}+(300)^{2}+(2 \times 300 \times 300) \cos \theta \end{aligned}$	1	
		$\begin{aligned} & (150)^{2}=(300)^{2}+(300)^{2}+(2 \times 300 \times 300) \cos \theta \\ & 22500=90000+90000+180000 \cos \theta \end{aligned}$	1	
		$\cos \theta=-\frac{157500}{180000}=-0.875$	1	

Model Answer: Summer 2018

Model Answer: Summer 2018

Model Answer: Summer 2018

Subject: Applied Mechanics
Sub. Code: 22203

Model Answer: Summer 2018

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	(c)	Since $\varphi=16^{\circ}$ $\mu=\tan \varphi=\tan 16^{\circ}=0.286$ For limiting equilibrium, $\begin{aligned} & \sum \mathrm{F}_{\mathrm{x}}=0-----(\mathrm{R}+\mathrm{ve},--\mathrm{ve}) \\ & -30 \cos 30^{\circ}+\mathrm{F}=0 \\ & -25.980+\mu \mathrm{R}=0 \\ & (0.286) \mathrm{R}=25.980 \\ & \mathrm{R}=90.839 \mathrm{~N} \\ & \sum \mathrm{~F}_{\mathrm{y}}=0-----(-+\mathrm{ve},--\mathrm{ve}) \\ & +\mathrm{R}-30 \sin 30^{\circ}-\mathrm{W}=0 \\ & +90.839-30 \sin 30^{\circ}-\mathrm{W}=0 \\ & \mathrm{~W}=75.839 \mathrm{~N} \\ & \mathrm{~F}=\mu \mathrm{R}=(0.286 \times 90.839)=25.980 \mathrm{~N} \end{aligned}$ Total Reaction $=\mathrm{S}=\sqrt{\mathrm{F}^{2}+\mathrm{R}^{2}}=\sqrt{(25.980)^{2}+(90.839)^{2}}$ $\mathrm{S}=94.481 \mathrm{~N}$ A concurrent force system is shown in Figure No. 7. Find graphically the resultant of this force system. Fig. No. 7	1	\%

Model Answer: Summer 2018

Subject: Applied Mechanics

Model Answer: Summer 2018

Subject: Applied Mechanics
Sub. Code: 22203

Model Answer: Summer 2018

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	(c) Ans.	Find the centre of gravity for the solid shown in Fig. No. 10. Fig. No. 10 1) Volume calculation $\begin{aligned} & V_{1}=\pi \times \mathrm{R}^{2} \times h=\pi \times(100)^{2} \times 400=12.566 \times 10^{6} \mathrm{~mm}^{3} \\ & V_{2}=\frac{2}{3} \times \pi \times(\mathrm{r})^{3}=\frac{2}{3} \times \pi \times(100)^{3}=2.094 \times 10^{6} \mathrm{~mm}^{3} \\ & \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}=14.66 \times 10^{6} \mathrm{~mm}^{3} \end{aligned}$ 2) Location of \bar{x} (from left side) As figure is symmetric about/yy axis, $\bar{x}=\frac{200}{2}$ $\overline{\mathrm{x}}=100 \mathrm{~mm}$ from left side. 3) Location of \bar{y} (from bottom) $\begin{aligned} & y_{1}=\frac{h}{2}=\frac{400}{2}=200 \mathrm{~mm} \\ & y_{2}=h+\left(r-\frac{3 r}{8}\right)=400+\left(100-\frac{3 \times 100}{8}\right)=462.5 \mathrm{~mm} \\ & \bar{y}=\frac{\mathrm{V}_{1} y_{1}+\mathrm{V}_{2} y_{2}}{\mathrm{~V}} \\ & \quad=\frac{\left(12.566 \times 10^{6} \times 200\right)+\left(2.094 \times 10^{6} \times 462.5\right)}{14.66 \times 10^{6}} \\ & \bar{y}=237.494 \mathrm{~mm} \text { from bottom. } \\ & \text { C. G. }=(100 \mathrm{~mm}, 237.494 \mathrm{~mm}) \end{aligned}$	1 2 1 1 1	6

